Die Analyse ergab Zahlen, welche mit der Formel C₁₅ H₁₂ O₂

übereinstimmen.

Der Körper stellt farblose lange, bei 56-57° schmelzende Nadeln dar. Sie lösen sich sehr leicht in kaltem Alkohol sowie in kaltem Aether; in heissem Wasser sind sie nur wenig löslich. Von kalten Alkalien werden sie nicht, von heissen allmälig aufgenommen; aus den alkalischen Lösungen wird durch Säurezusatz die ursprüngliche Verbindung wieder ausgefällt.

Die Formel C₁₅ H₁₂ O₂ löst sich auf in

$$C_6 \; H_4 \stackrel{CH_{-}-CH_2}{\stackrel{C}{\sim}} C_6 \; H_5$$

und die Verbindung ist als das lactidartige Anhydrid der Ortho-Toluylen hydratcarbonsäure aufzufassen.

251. Julius Thomsen: Die Lösungswärme der Dithionate, der Nitrate und der Sulfate.

(Eingegangen am 1. Mai; verlesen in der Sitzung von Hrn. A. Pinner.)

In den folgenden Tafeln habe ich die aus meinen Untersuchungen resultirende Lösungswärme der Dithionate, der Nitrate und der Sulfate zusammengestellt.

I. Dithionate.

Formel des Salzes	Wassermenge der Lösung	Lösungswärme bei 180 C.
$\mathbf{K_2} \ \mathbf{S_2O_6}$	500 Mol.	13010°
$\mathbf{Na_2S_2O_6}$	400 -	— 5370
$Na_2S_2O_6 + 2H_2O$	400 -	— 11650
$Ag_2S_2O_6 + 2H_2O$	400 -	— 1036 0
Ba $S_2O_6 + 2H_2O$	400 -	6930
$Sr S_2O_6 + 4H_2O$	400 -	— 925 0
$Ca S_2 O_6 + 4 H_2 O$	400 -	- 7970
Pb $S_2O_6 + 4H_2O$	400 -	8540
$Cu S_2O_6 + 5H_2O$	400 -	 4870
$Mg S_2 O_6 + 6 H_2 O$	400 -	— 2 960
$Mn S_2O_6 + 6H_2O$	400 -	— 1930
$Zn S_2O_6 + 6H_2O$	400 -	— 224 0
Ni $S_2O_6 + 6H_2O$	400 -	— 2420.
Berichte d. D. chem. Gesellschaft. Jahrg. XI.		69

II. Nitrate.

Formel des Salzes	Wassermenge der Lösung	Lösungswärme bei 180 C.
$\mathrm{Tl}_2\mathrm{N}_2\mathrm{O}_6$	600 Mol.	- 19940°
$K_2 N_2 O_6$	400 -	17040
$Am_2N_2O_6$	400 -	 12640
$Ag_2N_2O_6$	400 -	 10880
$Na_2N_2O_6$	4 00 -	— 10060
Ba N_2O_6	400 -	- 9400
Pb N_2O_6	400 -	— 7610
$Sr N_2 O_6$	400 -	— 4620
$\text{Li}_2 \text{N}_2 \text{O}_6$	200 -	+ 600
$Ca N_2 O_6$	400 -	+ 3950
$Cd N_2 O_6 + H_2 O$	400 -	+ 4180
$Cd N_2O_6 + 4H_2O$	400 -	— 5040
$Ca N_2 O_6 + 4 H_2 O$	400 -	— 7250
Sr $N_2O_6 + 4H_2O$	400 -	12300
$Ca N_2 O_6 + 6H_2 O$	400 -	 10710
Ni $N_2O_6 + 6H_2O$	400 -	 74 70
$Zn N_2 O_6 + 6H_2 O$	400 -	5840
$Co N_2 O_6 + 6H_2 O$	400 -	- 4 960
$Mg N_2 O_6 + 6H_2 O$	400 -	— 4220.

III. Sulfate.

Formel des Salzes	Wassermenge	Lösungswärme
Former des Saizes	der Lösung	bei 180 C.
$Tl_2 SO_4$	800 Mol.	8280 c
$K_2 SO_4$	400 -	- 6380
Ba SO ₄		5580
Ag_2SO_4	1400 -	- 4480
Am_2SO_4	400 -	— 2 370
Na ₂ SO ₄	400 -	+ 460
Li ₂ SO ₄	200 -	+ 6050
Cd SO ₄	400 -	+ 10740
Mn SO ₄	400 -	+ 13790
Cu SO ₄	400 -	+ 15800
Zn SO ₄	400 -	+ 18430
Mg SO ₄	400 -	+ 2 0280
$MgSO_4 + H_2O$	400 -	+ 13300
$Zn SO_4 + H_2O$	400 -	+ 9950
$Cu SO_4 + H_2O$	400 -	→ 9320
$MnSO_4 + H_2O$	400 -	+ 7800
Cd SO, + H ₂ O	400 -	+ 6050
$\text{Li}_2 \text{SO}_4 + \text{H}_2 \text{O}$	400 -	+ 6050

Formel des Salzes	Wassermenge der Lösung	Lösungswärme bei 18°C.
$Na_2SO_4 + H_2O$	400 -	— 1900
$Cd SO_4 + \frac{8}{3}H_2O$	400 -	 2660
Be $SO_4 + 4H_2O$	400 -	+ 1100
$MnSO_4 + 5H_2O$	400 -	+ 40
$Cu SO_4 + 5H_2O$	400 -	— 275 0
$Co SO_4 + 7H_2O$	800 -	— 3570
$MgSO_4 + 7H_2O$	400 -	- 3800
$Ni SO_4 + 7 H_2O$	800 -	425 0
$Zn SO_4 + 7H_2O$	400 -	— 4260
Fe $SO_4 + 7H_2O$	400 -	— 4510
$Y_2(SO_4)_3 + 8H_2O$	1200 -	+ 10680
$Di_2(SO_4)_3 + 8H_2O$	1200 -	+ 6320
$Na_2 SO_4 + 10 H_2O$	400 -	— 18760.

Die in der dritten Spalte angegebene Lösungswärme bezieht sich kanntlich auf das durch die Formel der ersten Spalte angegebene Gewicht des Salzes und für die in der zweiten Spalte bezeichneten Wasssermengen.

Kopenhagen, Univ.-Laborat., April 1878.

252. H. Klinger: Ueber Thialdehyde. III 1)

[Mittheilung aus dem chemischen Institut der Universität Bonn.] (Eingegangen am 1. Mai; verlesen in der Sitzung von Hrn. A. Pinner.)

In einer früheren Mittheilung zeigte ich, dass Säurechloride den Thialdehyd der Essigsäure in eine polymere Modification überführen, welche bei $124-125^{\circ}$ schmilzt, bei $245-248^{\circ}$ unter sehr geringer Zersetzung siedet und welche ich mit β -Acethialdehyd bezeichnen will. Die Dampfdichtebestimmungen dieses Körpers, nach der Hofmann'schen Methode vorgenommen, haben nun das eigenthümliche, unerwartete Resultat ergeben, dass er ganz dieselbe Molekularformel besitzt wie der von Weidenbusch entdeckte Thialdehyd, dessen Dichte von Hofmann festgestellt wurde und welche der Theorie nach 6.27 (auf Luft bezogen) betragen soll 2). Ich fand die Zahlen 6.06, 5.99, 5.99.

Diesen Umstand zu erklären gab es drei Möglichkeiten: entweder war der eine der beiden Körper gar kein Thialdehyd, sondern ein Umlagerungsprodukt eines solchen — oder der von Weidenbusch aufgefundene Thialdehyd repräsentirte keine einheitliche Substanz — oder endlich, es lag hier ein Beispiel vor einer neuen Art von Iso-

¹⁾ Diese Berichte XI, 1893; X, 1877.

²⁾ Ebendaselbst III, 589.